Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 165: 103778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690295

RESUMO

Extracellular vesicles (EVs) are nanosized structures containing proteins, lipids, and nucleic acids, released by living cells to the surrounding medium. EVs participate in diverse processes, such as intercellular communication, virulence, and disease. In pathogenic fungi, EVs carry enzymes that allow them to invade the host or undergo environmental adaptation successfully. In Neurospora crassa, a non-pathogenic filamentous fungus widely used as a model organism, the vesicle-dependent secretory mechanisms that lead to polarized growth are well studied. In contrast, biosynthesis of EVs in this fungus has been practically unexplored. In the present work, we analyzed N. crassa culture's supernatant for the presence of EVs by dynamic light scattering (DLS), transmission electron microscopy (TEM) and proteomic analysis. We identified spherical membranous structures, with a predominant subpopulation averaging a hydrodynamic diameter (dh) of 68 nm and a particle diameter (dp) of 38 nm. EV samples stained with osmium tetroxide vapors were better resolved than those stained with uranyl acetate. Mass spectrometry analysis identified 252 proteins, including enzymes involved in carbohydrate metabolic processes, oxidative stress response, cell wall organization/remodeling, and circadian clock-regulated proteins. Some of these proteins have been previously reported in exosomes from human cells or in EVs of other fungi. In view of the results, it is suggested a putative role for EVs in cell wall biosynthesis and vegetative development in N. crassa.


Assuntos
Vesículas Extracelulares , Neurospora crassa , Humanos , Hifas , Proteômica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica de Transmissão
2.
Fungal Genet Biol ; 159: 103672, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150841

RESUMO

We investigated hyphae regeneration in Trichoderma atroviride and Neurospora crassa, with particular focus on determining the role of the actin cytoskeleton after mechanical injury. Filamentous actin (F-actin) dynamics was observed by live-cell confocal microscopy in both T. atroviride and N. crassa strains expressing Lifeact-GFP. In growing hyphae of both fungi, F-actin localized in three different structural forms: patches, cables and actomyosin rings. Most patches were conspicuously arranged in a collar in the hyphal subapex. A strong F-actin signal, likely actin filaments, colocalized with the core of the Spitzenkörper. Filaments and cables of F-actin were observed along the cortex throughout hyphae. Following mechanical damage at the margin of growing mycelia of T. atroviride and N. crassa, the severed hyphae lost their cytoplasmic contents, but plugging of the septal pore by a Woronin body occured, and the rest of the hyphal tube remained whole. In both fungi, patches of F-actin began accumulating next to the plugged septum. Regeneration was attained by the emergence of a new hyphal tube as an extension of the plugged septum wall. The septum wall was gradually remodeled into the apical wall of the emerging hypha. Whereas in T. atroviride the re-initiation of polarized growth took  âˆ¼ 1 h, in N. crassa, actin patch accumulation began almost immediately, and new growing hyphae were observed âˆ¼ 30 min after injury. By confocal microscopy, we found that chitin synthase 1 (CHS-1), a microvesicle (chitosome) component, accumulated next to the plugged septum in regenerating hyphae of N. crassa. We concluded that the actin cytoskeleton plays a key role in hyphal regeneration by supporting membrane remodeling, helping to facilitate transport of vesicles responsible for new wall growth and organization of the new tip-growth apparatus.


Assuntos
Lepidópteros , Neurospora crassa , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Hifas , Hypocreales , Neurospora crassa/genética
3.
PLoS Genet ; 14(11): e1007390, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500812

RESUMO

The ability to respond to injury is a biological process shared by organisms of different kingdoms that can even result in complete regeneration of a part or structure that was lost. Due to their immobility, multicellular fungi are prey to various predators and are therefore constantly exposed to mechanical damage. Nevertheless, our current knowledge of how fungi respond to injury is scarce. Here we show that activation of injury responses and hyphal regeneration in the filamentous fungus Trichoderma atroviride relies on the detection of two danger or alarm signals. As an early response to injury, we detected a transient increase in cytosolic free calcium ([Ca2+]c) that was promoted by extracellular ATP, and which is likely regulated by a mechanism of calcium-induced calcium-release. In addition, we demonstrate that the mitogen activated protein kinase Tmk1 plays a key role in hyphal regeneration. Calcium- and Tmk1-mediated signaling cascades activated major transcriptional changes early following injury, including induction of a set of regeneration associated genes related to cell signaling, stress responses, transcription regulation, ribosome biogenesis/translation, replication and DNA repair. Interestingly, we uncovered the activation of a putative fungal innate immune response, including the involvement of HET domain genes, known to participate in programmed cell death. Our work shows that fungi and animals share danger-signals, signaling cascades, and the activation of the expression of genes related to immunity after injury, which are likely the result of convergent evolution.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Micoses/microbiologia , Regeneração , Transdução de Sinais , Trichoderma/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas , Micoses/imunologia
4.
Mol Microbiol ; 100(5): 860-76, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26878111

RESUMO

Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.


Assuntos
Proteínas Fúngicas/metabolismo , Luz , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Fisiológico , Trichoderma/genética , Trichoderma/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteína Quinase 8 Ativada por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos da radiação , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Pressão Osmótica , Fosforilação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos da radiação , Trichoderma/efeitos da radiação
5.
Front Plant Sci ; 5: 659, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484887

RESUMO

The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca(2+) that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca(2+), and ROS. Indeed, application of exogenous ATP and Ca(2+) triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca(2+) is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...